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Abstract

In this paper, the problem of fault diagnosis in multiprocessor sys-

tems is considered under a probabilistic fault model. This work focuses

on minimizing the number of tests that must be conducted in order

to correctly diagnose the state of every processor in the system with

high probability. A diagnosis algorithm that can correctly diagnose the

state of every processor with probability approaching one in a class of

systems performing slightly greater than a linear number of tests is pre-

sented. A nearly matching lower bound on the number of tests required

to achieve correct diagnosis in arbitrary systems is also proven. Lower

and upper bounds on the number of tests required for regular systems

are also presented. A class of regular systems which includes hypercubes

is shown to be correctly diagnosable with high probability. In all cases,

the number of tests required under this probabilistic model is shown to

be significantly less than under a bounded-size fault set model. Because

the number of tests that must be conducted is a measure of the diag-

nosis overhead, these results represent a dramatic improvement in the

performance of system-level diagnosis techniques.

Index Terms: Algorithms, fault diagnosis, hypercube, multiprocessor systems,

permanent faults, probabilistic models.
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1 Introduction

Highly parallel computer systems, i.e. computer systems containing a large number

of distinct processing elements, arebeing utilized in a growing number of applica-

tions. For systems with a large number of processors, automatic fault diagnosis is an

attractive method of reducing maintenance costs as well as increasing system avail-

ability. Previous work on multiprocessor system fault diagnosis has been primarily

concerned with worst-case fault scenarios, leading to overly pessimistic assessments

of diagnostic capability. The work presented in this paper focuses on evaluation

of diagnosis strategies under a probabilistic model in which processors are faulty

with independent and identical probabilities. This approach yields a more realistic

assessment of diagnostic capability but at the same time increases the complexity

of the corresponding analysis.

The problem of multiprocessor system diagnosis has been addressed previously

from a probabilistic viewpoint in [3,4,6,7,13,15,17,18,19,20]. The first paper con-

cerning probabilistic diagnosis [13] examined heterogeneous systems in which each

processor has an associated probability of failure. The authors examined the class of

systems known as p-probabilistically diagnosable systems in which any set of faulty

processors that has a priori probability greater than or equal to p of occurring is

uniquely diagnosable. The problem of determining whether a given system is p-

probabilistically diagnosable has been shown to be co-NP-complete I20] while an

O(n _) algorithm has been given [6] for determining the most likely fault set of a

system in the closely related weighted model. In related work, Blount presented a

method of achieving optimal diagnosis (diagnosis which is correct with maximum

probability) in a general probabilistic model [4]. Unfortunately, this optimal diagno-

sis requires exponential time and it was not determined how the quality of diagnosis

varies with the number of tests conducted.

In p-probabilistically diagnosable systems, fault sets with probability of occur-

rence slightly less than p can exist. Hence, the most likely fault set may be only

slightly more probable than other fault sets, meaning that the probability of choos-

ing an incorrect fault set may be high. The same may be true even when optimal

diagnosis can be achieved. In [18], the author examined systems for which the cor-

rect fault set can be identified with high probability. The model utilized applies to

homogeneous systems in which each processor has a common probability of failure

p. An efficient diagnosis algorithm was presented that correctly diagnoses a class of

systems containing cnlog n tests, for c > log_' with probability approaching one.

It was also claimed in [18] that this result was the best possible, i.e. all algorithms

must have probability approaching zero of achieving correct diagnosis in systems

containing o(nlog n) tests. Unfortunately, due to a subtle flaw in the proof, this
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result is untrue. This resultwasalsousedin [3] to prove a similarly flawed lower

bound in a more general probabilistic model.

In this paper, we utilize the model presented in [18]. A counterexample to the

lower bound claimed in [18] is given in which correct diagnosis is achieved with

constant probability in a sequence'of digraphs with n - 1 tests. Next, a diagnosis

algorithm that produces correct diagnosis with probability approaching one in di-

graphs containing slightly more than a linear number of tests is given. A nearly

matching lower bound on the number of tests required to achieve correct diagnosis

with probability approaching one is then proven. Finally, the problem of diagnosis

in regular systems is considered. A class of systems conducting O(n log n) tests in

which correct diagnosis can be achieved with probability approaching one is pre-

sented. This class contains the systems given in [18] as well as the important class

of hypercubes. It is also shown that for regular systems possessing o(n log n) tests,

all diagnosis algorithms perform poorly. This final result implies that for the im-

portant class of fixed-degree regular systems, weaker forms of diagnosis must be

considered.

2 Preliminaries

The multiprocessor system model utilized in this paper was proposed in [16]. In

this model a system is represented as a directed graph with vertices of the digraph

representing processors in the system and edges of the digraph representing tests

performed by one processor on another processor. In this section_ all basic quantities

related to this model are defined and a measure of diagnosis algorithm performance

is presented.

2.1 Basic Definitions

For a system composed of n processors, the set of processors is represented by

U --- {ul,... ,un}. It is assumed that these processors are capable of performing

tests on one another. This situation is represented by a digraph G(U, E), where the

vertex set U corresponds to the set of processors of the system and (u, v) _ E if and

only if processor u tests processor v in the system. Associated with each (u, v) E E

is a test outcome. This outcome is a 1(0) if u evaluates v as faulty (fault-free).

A complete collection of test outcomes constitutes a syndrome. Below syndromes,

fault sets, and other fundamental concepts are defined.

Definition 1 For a digraph G(U,E), a syndrome is a function from E to (0,1}.



Definition 2 For a digraph G(U, E), a fault set is a subset of the vertex set U.

For a processor u, the tester set consists of the processors that test u, the fail-

ure set consists of the processors that fail u, and the neighbor set consists of the

processors that test u along with those that u tests. These quantities are defined

below.

Definition 3 For a digraph G(U,E) and u E U, the tester set of u, denoted by

F -1 (u), is given by

r-l(u) = {ve U: (v,u) e E}

Definition 4 For a digraph G(U,E), a syndrome S, and u E U, the failure set of

u, denoted by fail_.,_(u), is given by

fail,,(u) = {v e F-1Cu): S((v,u)) = 1}

Definition 5 For a digraph G(U,E) and u E'U, the neighbor set of u, denoted by

N(u), is given by

N(u) : {re U: (u,v) E Z or (,,u) • E}

2.2 Diagnosis Algorithm Evaluation

A fundamental problem in multiprocessor systems is to identify the faulty proces-

sors in a system given a syndrome. An algorithm for this problem is referred to as a

diagnosis algorithm. A diagnosis algorithm takes a syndrome as input and outputs

a subset of the processors in the system. This subset contains exactly the processors

diagnosed as faulty by the algorithm. Thus, for a set of faulty processors and a syn-

drome it is possible to evaluate if the output of a deterministic algorithm is correct

by comparing the algorithm's output with the set of faulty processors. Syndrome,

fault set pairs are therefore used as the basic element in the subsequent probabilistic

analysis of diagnosis algorithm performance. Before proceeding with this analysis

however, the notion of correct diagnosis must be defined. For a syndrome S from a

digraph G(U, E), and a deterministic algorithm A, let

FaultyA(S) : {u • U : Algorithm A diagnoses u as faulty when run on S}

Thus, FaultyA(S) represents the output of Algorithm A when run on syndrome S.

Using this, the diagnosis quality of an algorithm on a syndrome, fault set pair is

characterized in Definition 6.



Definition 6 For a syndrome, fault set pair (S, F) from a digraph G(U, E), a de-

terministic algorithm A is said to produce

correct diagnosis if and only if FaultyA(S) -=- F,

partial diagnosis if and only if FaultyA(S) C F, and

false alarm diagnosis if and only if FaultyA(S) _ F.

Note that Definition 6 differs from that used in some previous work, e.g. [21], where

correct diagnosis may allow faulty processors to be identified as fault-free so long

as no fault-free processor is identified as faulty. In Definition 6, diagnosis is correct

only when each fault-free processor is identified as fault-free and each faulty pro-

cessor is identified as faulty. One of the goals of this paper is to provide a rigorous

foundation for the analysis of the diagnosis problem. To achieve this goal we take

great care in defining a proper measure of diagnosis algorithm performance as well

as a probabilistic fault model under which this performance can be evaluated. This

probabilistic model is presented in the following section.

3 Probabilistic Model

In much of the previous work in the system-level diagnosis area, diagnosis algorithm

evaluation has focused on worst-case performance. Under a bounded-size fault set

model, correct diagnosis can be guaranteed if the number of faulty processors in the

system is no greater than some value t < n/2. Such a model allows any set of t or

fewer processors in a system to be faulty, including sets that may be extremely rare in

practice. This approach can therefore lead to an overly pessimistic view of diagnosis

algorithm performance. In this paper, we present a probabilistic model for the faults

in a system and we use, as a measure of performance, the probability that a diagnosis

algorithm correctly identifies the faulty processors in the system. This approach

yields a more realistic assessment of diagnosis algorithm performance by accounting

for the likelihood of occurrence of the fault sets in a system. In our probabilistic

fault model, processors are faulty with probability p independently of one another,

fault-free processors always produce the correct outcome when performing a test,

and no assumptions are made concerning the outcomes of tests performed by faulty

processors. It will be shown in this paper that in contrast to the bounded-size fault

set model, correct diagnosis can be achieved with high probability in this model at

relatively low cost.

Some comments concerning the behavior of faulty processors under this mode]

are in order. We make no assumptions concerning the outcomes of tests performed

by faulty processors. Thus, faulty processors can pass or fail other processors in

virtually any manner. For example, faulty processors can:



1. alwaysfail otherprocessors,

2. alwayspassotherprocessors,

3. fail other processors with some probability,

4. collaborate with other faulty processors through their test outcomes in an

attempt to confuse the diagnosis algorithm, or

5. combine any or all of the above behaviors.

Since these as well as any other behaviors are allowed under this model, this is

equivalent to assuming that the faulty processors produce test outcomes in the

most detrimental manner. The diagnosis algorithms we present in this paper are

shown to produce correct diagnosis with high probability under any of these faulty

processor behaviors and are therefore very robust. We also show that the set of

systems for which these algorithms work contains systems which are very nearly the

sparsest possible under this model and hence, significant improvements can only be

achieved by restricting the behavior of faulty processors. With this in mind, we now

present the probability model.

For a digraph G(U, E), the sample space 12a(tZ,E ) of this probability model con-

sists of all syndrome, fault set pairs in that digraph, i.e.

flG(y,z ) = {(S, F) : F C U and S is a function from E to {0, 1}}.

Since no assumptions are made concerning the outcomes of tests performed by faulty

processors, the probability of a particular syndrome given a fault set may not be

specified in this model. The basic events of the model consist of sets of syndrome,

fault set pairs which have the same fault set and whose' syndromes are identical

except for the labels on edges out of faulty processors. Formally, a syndrome, fault

set pair (S a, F e) is contained in a basic event B defined as follows:

B = {(S,F): r = F' and V(u,v) e E with u e U- F, S((u,v))= S'((u,v))}

Note that there is a unique fault set associated with each basic event but that each

event may contain many distinct syndrome, fault set pairs. Now, let

/3G(tZ,E) = {B : B is a basic event of G(U, E)}.

The family of events 7C(U,E} in this probability space is the set of all subsets of

Ba(U,E).

Definition 7 A syndrome, fault set pair (S,F) in a digraph G(U, E) is said to be

incompatible if and only if 3u, v E U such that u E U - F, (u, v) E E, and
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I. v 6 U - F andS((u,v)) -- 1, or

andS((u, ,)) = 0.

A syndrome, fault set pair which is not incompatible is said to be compatible. A basic

event is said to be incompatible if its syndrome, fault set pairs are incompatible,

otherwise it is compatible. The probability of a basic event B in a digraph G(U, E)

is defined as follows:

0 if B is incompatible
PG(B)

plFl(1 - p)n-lF[ otherwise

where F represents the unique fault set associated with B. Clearly,

Pc(B) = 1

B6B(;(u,E)

and, hence, this is a legitimate probability measure.

The primary measure of the performance of a diagnosis algorithm used in this

paper is the probability that the algorithm produces correct diagnosis. For a digraph

G(U, E) and a deterministic algorithm A, let

Correcta(A) = {(s,r): FaultyA(S)= F}

and let NotCorrectc(A) represent the complement of Correcte(A). Thus,

Correcte(A) represents the set of all syndrome, fault set pairs in a digraph for

which Algorithm A produces correct diagnosis. Note that it may be the case that

CorrectG(A) ¢ J'C(U,E) in which case PG(CorrectG(A)) will not be defined. The
output of a particular diagnosis algorithm may depend on the outcomes of tests

performed by faulty processor s and thus, the probability of correct diagnosis for the

algorithm cannot be determined until a probability distribution on these edges is

specified.

For a digraph G(U,E), let P_ be a probability function defined on ['_G(U,E)

such that the family of events is equal to all subsets of fla(u,E} and VB 6 Ba(U,E),

P_(B) = Pa(B). Such a probability function will be referred to as a refinement of

Pa. Now, let PG represent the set of all refinements of Pa. Since any type of behavior

of the faulty processors is allowed in this model, the probability of correct diagnosis

for a deterministic algorithm A in a digraph G(U, E), denoted by DiagProba(A ) is
defined to be

DiagProbG(A)= rain P_(CorrectG(A))= min _ P_((S,F))
P_6Pc P_6Po (S,F)6Correcto{A)



Thus, when calculating the probability of correct diagnosis for an algorithm it is as-

sumed that the faulty processors perform their tests in the manner most detrimental

to the algorithm. We may also define this diagnosis probability for probabilistic diag-

nosis algorithms. Given a syndrome S, a probabilistic diagnosis algorithm A chooses

a fault set F with some probability tall it PA,s(F) where _fCtr pA,s(F) = 1. Thus,
for a digraph G(U, E) and a probabilistic diagnosis algorithm A, the probability of

correct diagnosis for Algorithm A is defined to be

DiagProbc(A) = min _ P,b ((S,
v_ePc F)). PA,s(F)

(S,f )_nc

4 Diagnosis Using n-1 Tests

In [18], an efficient diagnosis algorithm that achieves correct diagnosis with probabil-

ity approaching one in sequences of digraphs containing cn log n edges, for c > toz-_l_,

was presented. It was also claimed in [18] that all diagnosis algorithms must have

a probability of correct diagnosis that approaches zero for digraphs containing

o(nlog n) edges. In this section, a sequence of digraphs containing n - 1 edges

is exhibited for which a simple diagnosis algorithm can achieve correct diagnosis

with constant probability, thereby providing a counter-example to this claim.

Consider a sequence of digraphs Gn(Un,E,_) with Un = {ul,...,u,} and E,_
defined as follows:

Err = {(Ul, tt2), (Ul, u3), • . . , (ttl, Urt- 1), (Ul, Urt) } ,

i.e. Ul tests all other processors. Now, consider the following simple diagnosis

algorithm.

Algorithm Naive

Input: "

Output:
A syndrome S in a digraph G(U, E).
A set F C U.

for each v e {u2,u3,...,un}

if S((ut,v))= 1 then F _ Fu{v}

Algorithm Naive simply assumes that ul is fauit-free and diagnoses a processor

as faulty if and only if it is failed by ul. Clearly, if u_ is faulty, Algorithm Naive



incorrectly diagnoses ul itself. If ul is fault-free however, Algorithm Naive produces

correct diagnosis. Thus, VPb. E Pa.

Vbn(Correcte.(Naive)) = Pb.({(S,F) : u, is fault-free))

, = 1-p

and therefore

DiagProba. (Naive) = 1 - p.

Thus, this simple diagnosis algorithm produces correct diagnosis with constant prob-

ability in a sequence of digraphs containing exactly n - 1 edges.

5 A Majority-Vote Algorithm

In this section, a simple yet powerful diagnosis algorithm known as Algorithm Ma-

jority is presented. In Algorithm Majority a processor is diagnosed as faulty if and

only if it is failed by more than 1/2 the processors in its tester set.

Algorithm Majority

Input: A syndrome S in a digraph G(U, E).

Output: A set F _C U.

for each uEU

if Ifailin(u)[ > _ then F _-- F U {u}
2

Theorem 1 For a digraph G(U,E), Algorithm Majority has a time complexity of

O(IEI) and a space complexity of O(IEI).

Proofl The failure set cardinalities as well as the tester set cardinalities can be

calculated in a single traversal of the labeled adjacency lists of the digraph. This

requires O(]Et) time. The only storage requirement for the algorithm aside from

the input and output is a set of temporary variables to hold these values as they are

calculated. Hence, the space complexity is also O([EI). II

Algorithm Majority is slightly more sophisticated than Algorithm Naive. Rather

than blindly believing the test outcomes of a single processor, it relies on a majority-

vote among the processors in the tester set of a given processor. It should be noted

that for the special class of systems in which one processor tests every other processor

and no other tests are conducted, Algorithms Naive and Majority are equivalent.
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6 Diagnosis in Sparse Systems

In this section, we examine the problem of correctly diagnosing multiprocessor sys-

tems having sparse communication networks. First, it is shown that for a class of

irregularly structured systems utilizing a number of tests growing just faster than n,

Algorithm Majority correctly diagnoses every processor with probability approach-

ing one. Next, the probability of correct diagnosis of Algorithm Majority is evaluated

on some fixed systems which utilize a modest number of tests. Finally, it is proven

that a linear number of tests are required for any diagnosis algorithm to be capable

of producing correct diagnosis with high probability.

6.1 An Upper Bound on the Number of Tests Necessary for Cor-

rect Diagnosis

Consider a class of systems in which there is a set of processors known as the testers.

The systems are such that any processor which is a tester tests all other processors in

the system (including the other testers). Any processor that is not a tester conducts

no tests. Thus, a (small) fraction of the processors are relied upon to satisfy all the
testing requirements of the system. Such a digraph will be referred to as a tester

digraph, formally defined below.

Definition 8 A digraph G(U, E) is said to be a tester digraph if and only if
3TG C_U such that

E = {(_, v): _ _ To,, e U, and _ # ,}.

The set TG is known as the testing set of G.

Figure 1 is an example of a tester digraph with 3 testers and 8 vertices.

For a tester digraph G(U, E) with testing set To, let

ITcl and (S, F) is compatible}GoodMajG= {(S, F): ITGf3(U - F)} > T

Thus, GoodMaja represents the set of compatible syndrome, fault set pairs in which
more than 1/2 the testers are fault-free. The following lemma shows that if the

majority of testers in a tester digraph are fault-free, then the diagnosis of Algorithm

Majority will be correct.

Lemma 1 For a tester digraph G(U, E), GoodMajG ___CorrectG(Majority).
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Testing Set

L .................. J

Figure 1: A Tester Digraph

Proof: We will show that if (S, F) E GoodMaja, then (S, F) E Correctc (Majority)

and therefore, GoodMaj a C_ Corrects(Majority).

Consider any (S, F) _ GoodMajc and any u E U.

case i : u e (U - TG)n(U - F)

Because (S, F) is compatible, u must be passed by more than 1/2 the testers, im-

plying u _ FaultyMajority(S). Recall that FaultyMajority(S) is the set of processors

diagnosed as faulty by Algorithm Majority when run on S.

case _ : uE(U-TG)nF

Similarly, u must be failed by more than 1/2 the testers implying u e FaultyMajority(S).

ease S : u e Tc n(U- F)

Here, u can be failed by at most 1/2 the remaining testers. Since Algorithm Majority

diagnoses a unit as faulty only when it is failed by a strict majority of its tester set,

u ¢ FaultyMajority(S).

case ,_ : u E TG A F

In this case, u must be failed by more than 1/2 the remaining testers, implying

u _. FaultyMajority(S).

Hence, FaultyM_jority(S) = F and therefore (S, F) E CorrectG(Majority). I
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Thus, if more than 1/2 the testers in a tester digraph are fault-free, A}gorithm

Majority produces correct diagnosis. Theorem 2 shows that if the number of testers

is given by any unbounded function, this condition will be achieved with probabil-

ity approaching one and hence the probability of correct diagnosis for Algorithm

Majority approaches one.

Theorem 2 Let w(n) be any unbounded function. If p < 1/2, then for any se-

quence of tester digraphs on n vertices having win ) testers, the probability of correct

diagnosis for Algorithm Majority approaches one as n _ oo.

Proof: We' must show that for any sequence satisfying the theorem condition,

DiagProbc. (Majority) --_ 1 as n --_ oo. If we let X be a random variable representing
the number of faulty units in the testing set of a tester digraph G, then

ITal and (S, F)is compatible}
GoodMaja = {(S,F): X < -_

Now, X is a binomial random variable with parameters [Tel and p. It follows from

Lemma 1 that VP_. 6 Pa.

P_. (Correcto. (Majority))

_> Pb. (GoodMaja.)

= Pb.({(s,r): X < _})

= 1- Pb,,({iS, F): X >_ I_a[})

X
-- 1 R l
_ - G.({(S,F):ITa. I

,

---p_> _-p})

Now, since p < 1/2, ½ - p > 0, and by the Weak Law of Large Numbers [9],

and therefore

P,' (Correcta. iMajority))-* 1G.

DiagProba. iMajority) _ 1.

I

Thus, Algorithm Majority produces correct diagnosis with probability approach-

ing one in a class of digraphs containing a number of edges given by n. w(n), where

win ) is any function that goes to infinity (arbitrarily slowly) with n. Under a

bounded-size fault set model a quadratic number of tests are required to withstand

a linear number of faults while this result shows that in this probabilistic model a
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I p I Ir l I
0.001 3

p.oo5 5
0.010 5

0.050 11

0.100 19

0.200 41

0.300 105

Table 1: Size of Testing Set Required for

Correct Diagnosis Probability of 0.99

linear expected number of faults can be tolerated with a number of tests that is arbi-

trarily close to linear. The maximum degree of the vertices in this class of digraphs

is large, however, which may be a problem in'some applications. This motivates us

to study the problem of diagnosis in sparse regular systems in Section 7.

6.2 Performance of Algorithm Majority on Fixed Systems

In this section, the number of tests required to achieve a given probability of correct

diagnosis in tester digraphs using Algorithm Majority is examined. For a tester

digraph G(U, E) with testing set Ta

DiagProba (Majority) ___ (I)

Note that the probability of correct diagnosis depends only on the testing set cardi-

nality and not on n. For a given probability of failure, Inequality 1 can be used to

determine the number of testers needed for Algorithm Majority to achieve a speci-

fied probability of correct diagnosis. The size of the testing set required to achieve a

correct diagnosis probability of 0.99999 for various values of p is shown in Table 1. If

the probability of failure of a processor is 0.001, Algorithm Majority can achieve cor-

rect diagnosis with a probability of 0.99999 using three tests per processor regardless

of the number of processors in the system. For a probability of failure of 0.005 or

0.010 the tester set need only be of cardinality five for Algorithm Majority to achieve

a probability of correct diagnosis of 0.99999. Thus, when the probability of failure
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" Ip
100 0.01

100 0.10

100 0.30

1000 0.01

1000 0.10

1000 0.30

10,000 0.01

10,000 0.10

10,000 0.30

][ Bounded-size Probabilistic

400 99

1800 495
t

4100 3069

18,000 999

123,000 4995

334,000 30,969

1,240,000 9999

10,700,000 49,995

31,070,000 309,969

Table 2: Total Number of Tests Necessary for

Correct Diagnosis Probability of 0.99

is small correct diagnosis can be achieved with extremely high probability using a

total number of tests that is near n. When p is larger, more tests are necessary. As

indicated in Table 1, for a probability of failure of 0.300, more than 100 tests per

processor are required to achieve correct diagnosis with probability 0.99999. Since

a large fraction of the processors in the system will be faulty in this situation it is

to be expected that a larger number of tests are required. The important point is

that the total number of tests remains proportional to n regardless of the value of

p.

In Table 2, we compare the number of tests required_under the bounded-size

fault set model to the number required by Algorithm Majority in order to achieve

a correct diagnosis probability of 0.99. The number of tests required under the

bounded-size fault set model was calculated in the following manner. For a given n

and p, determine t such that the probability of more than t out of the n processors

being faulty is no greater than 0.01. Table 2 shows the results of this comparison

for various values of n and p. For large n and small p the number of tests required

under the probabilistic model is dramatically lower than the number required under

the bounded-size fault set model. For example, when n -- 10,000 and p = 0.10, the

number of tests required in the probabilistic model is reduced by a factor of 214

over the bounded-size fault set model.

14



6.3 A Lower Bound on the Number of Tests Necessary for Correct

Diagnosis

In this section, a lower bound on the number of tests necessary to achieve correct

diagnosis with high probability is p;roven. It is shown that if the number of edges in

an arbitrary sequence of digraphs grows slower than n, then all diagnosis algorithms

have probability approaching zero of achieving correct diagnosis. This result implies

that Algorithm Majority achieves a probability approaching one of correct diagnosis

on systems that are very nearly as sparse as possible. Thus, this relatively simple

diagnosis algorithm is indeed extremely powerful.

When the number of edges in a sequence of digraphs grows slower than n, isolated

processors, i.e. processors which have no incident edges must exist. Intuitively, no

diagnosis algorithm should be capable of correctly identifying the state of all these

isolated processors with high probability, making diagnosis in such situations impos-

sible. This is formally proven in Theorem 3. The essence of the proof of Theorem 3

can be explained quite simply. To prove that a deterministic diagnosis algorithm

A has a probability approaching zero of achieving correct diagnosis in a sequence

of digraphs Gn(Un, En), a set of (S, F) pairs disjoint from CorrectG, (A) must be
exhibited that has a probability dominating'the probability of Correcta.(A). For

a given syndrome from a system with isolated processors, it can be shown that so

long as the number of isolated processors approaches infinity, the probability of that

syndrome and a fault set with a particular labeling of the isolated processors is dom-

inated by the probability of that syndrome and the fault sets in which the isolated

processors are relabeled in all possible ways. Thus, for any (S, F) 6 Correcte. (A),

a set of syndrome, fault set pairs disjoint from Correct(;. (A) can be exhibited that

has probability dominating the probability of (S,F). It is also shown that there

exists a deterministic diagnosis algorithm that has perforrfiance at least as good as

the performance of any probabilistic algorithm, thus completing the proof.

Theorem 3 Let A be any probabilistic or deterministic diagnosis algorithm. If

0 < p < 1, then for any sequence of digraphs on n vertices having o(n) edges, the

probabi'lity of correct diagnosis for Algorithm A approaches zero as n ---* oo.

Proof: We must show that for any probabilistic or deterministic diagnosis algo-

rithm A and any sequence of digraphs G,(Un, E,) having IE,[ 6 o(n),

DiagProba,(A ) --* 0 as n --* o_. Assume faulty processors pass all processors they

test. This yields a refinement Pb,, 6 ?a., where

0 if (S,F) is incompatible or 3u 6 F,v 6 U with S((u,v)) = 1P_,, ((S,F)) = plF](1 _ p)n-IFI otherwise
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Now,let ISOa. C_ Un represent the set of isolated processors, i.e. processors which

have no incident edges, in Gn(Un, E_). Clearly,

IISOc. I >_ n - 21E,_I _ oo.

4

For a syndrome, fault set pair (S, F) E CorrectG. (A) let

Relabel(s.F) = {(S', F') : S' = S, F' # F, and F - ISOG, = F' - ISOG. }

and let

AllLabel(s.F ) = Relabel(s2- ) U {(S, F)}.

Thus, Relabel(s.F) consists of the syndrome, fault set pairs in which the processors

of ISOG. are relabeled in all possible ways. Clearly,

P' (NotCorrectG. (A))G.

k _ Pb. (Relabel(s,F))
(S.F)eCorrect,_. (A)

---- E [P_..CAllLabelcs,F)). - P"G. ((S,F))]

and since all processors in the set ISOG. are isolated,

P_. ((S, r)) = p Its°_. nF}(i - p)llS°_" n(V.-F)[p_. (AllLabel(s.F)).

Therefore,

E
(S,F )e CorrectGn (A )

>

P_. (AllLabel(s.F))

R'
__, G"((S'F))

(S,Y)_:Uorrecf;Gn (A) PllSOa" nf]( l -- P)IlSOa" n(V"-Y)l

E(S,F)eCorr.¢tG. (A) P_. ((S, F))

[max(p, 1 - p)l[ISO_.. [

and thus

P.' (NotCorrectG. (A))G.

( 1 )-> [max(p, 1 p)]Iisoa.[ - 1
- (s2')eCo_r_¢t,;. (A)

P£((S,F))

16



Therefore,

P_.(Correcta.(A)) < [max(p'l-P)][ls°a"[
- 1 -[max(p, 1 - p)][lsoG.J" P_.(Correcta.(A))

--* 0 '

as n _ oo. Thus, for any algorithm A, DiagProba. (A) -* 0, as Well. Now, consider

any probabilistic diagnosis algorithm A. Then, VP_. E Pa.

DiagProba. (A) < _ P'_ a.((S,F)) PA,s(F)

(S,F)6fla.

Consider the deterministic algorithm A' that for any syndrome S chooses fault set

F such that VF' _CU.

Pb.((S,F)) > P_.((S,F')).

Then, if S represents the set of all syndromes in G.

DiagProbG. (A) < _ P'_ a.((S, FaultyA,(S))) PA,s(F)

(s,F)eno.

= _ _ P_.((S, FaultyA,(S))).pa,s(F)
SES FC_U.

= _ P_.((S, Faultya,(S))) _ PA,s(F)
$6S FCU.

= Pb. (C°rrectc. (A'))

----+ 0

|

A few comments concerning this result are in order. While the theorem implies

only that under some behavior of the faulty processors, correct diagnosis with high

probability is impossible to achieve, the result can be shown to hold for all "natural"

faulty processor behaviors using virtually the same proof. The key to the proof lies in
the fact that the isolated processors of the system can be relabeled in arbitrary ways

without affecting the probability of any test outcomes in the system or the status

of other processors. This holds as long as outcomes of tests performed by faulty

processors do not depend on the status of these isolated processors. Thus, correct

diagnosis with high probability cannot be achieved unless the faulty processors are,

in some sense, clairvoyant.

7 Diagnosis in Regular Systems

The study of regular systems is important for several reasons. First, regular designs

are more easily and efficiently implementable than irregular designs. Furthermore,

17



the majority of existing multiprocessor systems possess a regular structure. Finally,

assuming the tests are conducted in a set of rounds, the maximum number of tests

conducted by any processor is a measure of the overhead required ¢o achieve fault

tolerance. For a fixed total number of tests, regular systems require the minimum

overhead using this measure. In this section, we examine the diagnosis problem for

regular systems under our probabilistic model.

7.1 Upper Bound

In [18], it was shown that correct diagnosis can be achieved with probability ap-

proaching one in a class of systems, known as Dl,clog,_ systems, for c > _. The
r

systems from this class conduct cnlog n tests. In this section, we present a class

of systems conducting cnlog n tests which contains the class given in [18] and for

which Algorithm Majority achieves correct diagnosis with probability approaching

one. This class of systems contains many useful systems, e.g. hypercubes, which

are not contained in the Dl,¢log_ class.

The systems studied in this section are those for which every processor in the

system is tested by at least c log 2 n other processors, for c sufficiently large. This

includes regular systems with O(nlog 2 n) tests, of sufficiently large degree. Theo-

rem 4 shows that for any sequence of these systems, Algorithm Majority will produce

correct diagnosis with probability approaching one. In order to prove this and sub-

sequent results, the following corollary [1,8] to a theorem proved by Chernoff [5] is
needed.

Corollary 1 Let Y be a binomial random variable with parameters n and p. Then

- i pi(1- _<e -(1-")2np/2, O< a < 1
i=0

n()P(Y _ anp) _--- _ 12 p)n-i en(1-ap)log, fl.L_-4-an,,lo_ t_
i=ranp] i pi(1 - < l-<,l, ..... , a >_ 1

Theorem 4 Let c be any constant such that c > log e _ + log e

If p < 1/2, then for any sequence of digraphs on n vertices having a tester set of size

at least c log 2 n for every processor, the probability of correct diagnosis for Algorithm

Majority approaches one as n _ co.

Proof: We need to show that for any sequence satisfying the theorem condi-

tion, DiagProbGn (Majority) --* 1 as n 4-4 co. Intuitively, the worst performance of

18



Algorithm Majority is obtained when faulty processors fail all fault-free processors

and pass all faulty processors. Let P_. E P_. be the refinement corresponding to

this faulty processor behavior. Consider (S,F) E Correct_.(Majority) such that

P_.((S,F)) > 0. Let B be the basic event with (S,F) e B. Then, V(S',F') e B,

(S',F') e CorrectG.(Majority). Thtts, VP_. e PG.,

P_. (Correctc. (Majority)) _< P_. (Correct(:. (Majority))

and therefore

DiagProbG. (Majority) = P_. (CorrectG. (Majority))

Now, let X be a random variable representing the number of units whose tester

set does not contain a majority of fault-free units. Clearly,

{(S,F) : X = 0 and (S,F) is compatible}

Therefore,

C_ Correctc. (Majority)

P_. (CorrectG. (Majority))

' S-> PS.({(,F):X=0})

> 1 - R'_ c.(((S,F):X>O})
>_ l- E[X]

1 if ui is tested by at least

]F-1(ui)]/2 faulty units
0 otherwise

and

E[Xl
n

= _. E[X,]
i=I

n

= _Pb.({(S,F): X, = 1})
i=l

= Ir- ! udl p/(l_p)tr-'(.,)l-i
i=l
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Now, = [apIr-l(U,)]], wherea = _ > 1, and thus, by Corollary 1,

?1

i=l_

Since p < 1/2, log e 2(1 - p) + log e 2p < 0 and so

E[X] < ne "

_ 0

{ [asn--,oo, sincec> _ log, 2-_-_+log. 2-_-t II

7.2 A Special Case - Hypercube Systems

In this section, we examine the consequences of Theorem 4 for hypercube systems.

In a binary hypercube architecture, the constant c is equal to one. Hence, in order for

the hypercube to be diagnosable with probability approaching one the probability

of failure p must satisfy

l°ge 2(1 - Pl) + log, < 1.

This implies that p must be less than approximately 0.067. This condition is likely

to be satisfied in the majority of fault environments. The probability of failure can

be higher in many of the other members of the hypercube family which have c > 1.

Most of the previous work in the diagnosis area has utilized a bounded-size fault

set model where it is assumed that no more than t faults occur in the system. A

system is said to be t-diagnosable if any combination of t faulty units in the system

can be uniquely diagnosed. It is well known that a k-dimensional hypercube is k-

diagnosable but not (k + 1)-diagnosable. Since, k = log s n, where n is the number

of vertices of the cube, the assumptions of the bounded-size fault set model are

satisfied only when the number of faults is less than or equal to the logarithm of

the number of units. It is unlikely that this condition will be met in large systems.

Under the probabilistic model, however, a number of faults that is linear in the
number of units can be tolerated.

Table 3 illustrates the diagnosis performance difference between the two models

on hypercube systems for probabilities of failure of 0.002 and 0.020. The fourth

column of this table lists the expected number of faulty processors for the corre-

sponding system and failure probability. Pk represents the probability that no more
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I k I " I p I Exp #faulty
6 64 0.002 0.13

6 64 0.020 1.28

8 256 0.002 0.51

8 256 0.020 5.12

10 1024 0.002 2.05

10 1024 0.020 20.48

12 4096 0.002 8.19

12 4096 0.020 81.92

14 16384 0.002 32.77

14 16384 0.020 327.68

16 65536 0.002 131.07

16 65536 0.020 1310.72

20 1048576 0.002 2097.15

20 1048576 0.020 20971.52

Pk
1.0000

0.9997

1.0000

0.9258

1.0000

0.0079

0.9267

0.0000

0.0002

0.0000

0.0000

0.0000

0.0000

0.0000

PM_

1.0000

0.9999

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

Table 3: Diagnosis Probability on a k-dimensional, n-node Hypercube

than k units are faulty and PM_j represents a lower bound on the probability of

correct diagnosis for Algorithm Majority. Since the diagnosis algorithms proposed

for the bounded-size fault set model can only guarantee correct diagnosis in a k-

dimensional hypercube when the number of faults is less than or equal to k, Pk is

an estimate for the probability of correct diagnosis for those algorithms.

It can be seen from Table 3 that performance under the bounded-size fault set

model degrades rapidly as the size of the hypercube increases. The probability of

correct diagnosis for Algorithm Majority, however, is very nearly one for all the

hypercubes studied, even when the probability of failure of a processor is as large

as 0.02. Consider the case where k = 16 and the probability of failure is 0.02. In

this situation, the expected number of faults is greater than 1300 and yet Algorithm

Majority still produces correct diagnosis with a probability that is very nearly one.

Under the bounded-size fault set model, the number of faults is limited to 16 for

this situation. When k = 16, the number of processors is 65,536. While this

may seem large, a system containing this many processors, namely the Connection

Machine [11], has been built.
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7.3 Lower Bound

While hypercubes are an important class of system, systems with even fewer con-
nections are expected to see increased use in future multiprocessor applications. We

are therefore interested in determining a lower bound on the total number of tests

necessary to achieve correct diagnosis with high probability. Such a lower bound

was proven in [2] for regular systems. This result states that all diagnosis algorithms

must have a probability of correct diagnosis that approaches zero in regular systems

with o(n log n) tests. This more general probability model contains the model uti-

lized in this paper as a special case and hence this result holds for this model as

well. Thus, for the important class of regular systems the algorithm given in [18]

as well as Algorithm Majority are both optimal to within a constant factor. This

result also demonstrates that the irregular structure of the tester digraphs studied

in this paper is a crucial factor in making them amenable to diagnosis.

Of special interest due to their widespread use are muitiprocessor systems which

are regular and of fixed degree. Included in this class of systems are rings, torii, and

hexagonal meshes. This somewhat pessimistic result implies that weaker forms of

diagnosis must be considered for these systems.

8 Diagnosis using a Linear Number of Tests

It has been shown that Algorithm Majority can achieve correct diagnosis with prob-

ability approaching one in digraphs containing nw(n) edges, while all algorithms

must have probability approaching zero of correct diagnosis in digraphs possessing

o(n) edges. These results leave open the question of what can be achieved using cn

edges, for some positive constant c. In this section, it is shown that with cn edges

Algorithm Majority can achieve a probability of correct diagnosis that is a constant

arbitrarily close to one. It is also shown that a constant probability less than one

is the best that any algorithm can hope to achieve in this situation, meaning that

Algorithm Majority is optimal for digraphs with a linear number of edges.

The 'following theorem characterizes the performance of Algorithm Majority on

digraphs with a linear number of edges.

Theorem5 Let e be any real number such that O < e <_ 1. If p< 1/2, 3c>0 such

that for all su_ciently large tester digraphs having at least c testers, the probability

of correct diagnosis for Algorithm Majority is at least 1 - e.

:Proof: We must show that, for any • with 0 < • < 1, 3c > 0, n0 such that

if G,(U,,En) is a sequence of tester digraphs with ITG. I :> c, then Vn >_ no,
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1
DiagProbG.(Majority ) :> 1 -e. Let a = 2l-'0_-p)" < 1. Then, VP_,, E PG.,

P_.(Correctc.(Majority)) > 1-
i=0

>_ I-[e-(1-'_)'/2] (l-p)c

by Corollary 1. Now, if c is chosen such that

-2lne
c>

(1- a) (1 - v)

then

P_.(Correctc,,(Majority)) >__ 1 - e l"_

= l--e

]-i

l

Thus, Algorithm Majority can achieve correct diagnosis with probability arbi-

trarily close to one in sequences of digraphs having a linear number of edges. The

following theorem shows that all diagnosis algorithms must have a probability of

correct diagnosis that is bounded away from one by a positive constant in this
situation.

Theorem6 Let c be any positive constant. If O < p< 1, 3e > O such that for any

probabilistic or deterministic diagnosis algorithm A and any sufficiently large digraph

on n vertices having no more than cn edges, the probability of correct diagnosis for

Algorithm A is no greater khan 1 - e.

Proof: We must show that, for any c > 0, 3e > 0, no such that if G,,(Un, En) is

a sequence of digraphs with IE,_I < cn, then Vn _> no, DiagProbc.(A) _< 1 - e. Let

R tc. E PG. be such that faulty processors fail all other processors. Now, let Umina. E
Un be any vertex of G,, such that Vu E On, IN(umin(:.)l _< [N(u)]. Thus, Umi.,_.

is a processor having minimum size neighbor set in Gn. Clearly, IN(umina.)l <_ 2c.

Now, let

Surra. = {(S,F): N(umlno.)N(V- F) = O}.

Thus, Surra. represents the set of syndrome, fault set pairs in which Umin,_n has

only faulty processors in its neighbor set. Then,

Pb. CSurrc.) = pINCu.,'-v.)I

>__ p2_
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Now, if Surr_. represents the complement of Surra., then for any deterministic

diagnosis algorithm A

(CorrectG.(A)n S rra.)
= 1 - P_. (NotCorrecta. (A) U SurrG. c)

>_ 1- P_.(NotCorrectG.(A)) - P_.(SurrG. ¢)

> p2C P' (NotCorrecta.(A))
-- -- Gn

Now, consider any (S, F) 6 CorrectG.(A)f3 Surra. and (S,F') such that if

Umi.,- 6 F, then F' = F - {Uminq. }, otherwise F' = F U {Umln_. }. Thus, (S, F')
is identical to (S, F) except for the label on ttrninG • Since faulty processors fail all

other processors, each edge incident on ttminG, will be a one regardless of the state

of ttminG" • Thus,

p, (p l-p),a.((S,F')) > min "l--p' p P_,.((S,F))

and therefore,

P_. (NotCorrectG. (A))
/ £>_ min |5 ,
\1 P

_> min 1 - p'

1 - p) R' (CorrectG.(A) Q SurrG.)p a.

l-P) [p:C-PS.(NotCorrectG.(A)) ]

or

P_.(NotCorrectG.(A)) [1 + min ( 1 -p' - _ 1 -p' p P

and
min(l___p, l__p )p2_

P_.(NotCorrecte.(A)) > = e > 0
- 1 + min(__p, __e_)

so long" as 0 < p < 1. Now, consider any probabilistic diagnosis algorithm A. Then,

VP_. 6 PG.

DiagPr°ba. (A) < E P_.((S,F))'pA,s(F)
(s,F)ena.

Consider the deterministic algorithm A' that for any syndrome S chooses fault set

F such that VF' C U.

P_.((S,F)) >_ P_.((S,F')).
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Then,if S represents the set of all syndromes in G,

DiagProba. (A) <

SES FC_U.

--- _ P_.((S, FaultyA,(S)))
$6S

= P_. (Corrects. (A'))

< l-e

' S(( ,Fa ltyA,(S) )) . pA.s(F)

Pb, ((S,Fa ttyA,(S))) .pA,s(F)

FCU.

9 Conclusion

A probabilistic fault model for multiprocessor systems in which processors are faulty

with probability p has been studied. It has been shown that correct diagnosis can

be achieved with probability approaching one in a class of systems that conducts

slightly more than a linear number of tests using a simple and efficient diagnosis

algorithm. This algorithm also produces a probability of correct diagnosis that

is arbitrarily close to one in systems conducting a linear number of tests. It has

also been shown that this result is the best possible, i.e. in systems for which the

number of tests grows more slowly than n, all diagnosis algorithms, whether they

be deterministic or probabilistic in nature, must have a probability approaching

zero of correct diagnosis and furthermore, in systems containing a linear number of

tests, all algorithms have a probability of correct diagnosis bounded above by some

constant less than one. In addition, this algorithm has been shown to work with

high probability on a class of regular systems which contains hypercubes as a special

case. This result is nearly the best possible as it is known that no algorithm can

achieve diagnosis with high probability on regular systems of degree o(log n).
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